Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fungal Biol ; 127(10-11): 1415-1425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37993253

RESUMEN

Amylomyces rouxii is a zygomycete that produces extracellular protease and tyrosinase. The tyrosinase activity is negatively regulated by the proteases and, which attempts to purify the tyrosinase (tyr) enzyme that has been hampered by the presence of a protease that co-purified with it. In this work we identified genes encoding aspartic protease II (aspII) and VI of A. rouxii. Using an RNAi strategy based on the generation of a siRNA by transcription from two opposite-orientated promoters, the expression of these two proteases was silenced, showing that this molecular tool is suitable for gene silencing in Amylomyces. The transformant strains showed a significant attenuation of the transcripts (determined by RT-qPCR), with respective inhibition of the protease activity. In the case of aspII, inhibition was in the range of 43-90 % in different transformants, which correlated well with up to a five-fold increase in tyr activity with respect to the wild type and control strains. In contrast, silencing of aspVI caused a 43-65 % decrease in protease activity but had no significant effect on the tyr activity. The results show that aspII has a negative effect on tyr activity, and that the silencing of this protease is important to obtain strains with high levels of tyr activity.


Asunto(s)
Proteasas de Ácido Aspártico , Mucorales , ARN Interferente Pequeño , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Proteasas de Ácido Aspártico/genética , Proteasas de Ácido Aspártico/metabolismo , Mucorales/genética
2.
Int J Mol Sci ; 24(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37175859

RESUMEN

A wide variety of biological functions, including those involved in the morphogenesis process of basidiomycete fungi, have been attributed to laccase enzymes. In this work, RNA interference (RNAi) was used to evaluate the role of the laccase (lacc2) gene of Pleurotus ostreatus PoB. Previously, transformant strains of P. ostreatus were obtained and according to their level of silencing they were classified as light (T7), medium (T21) or severe (T26 and T27). The attenuation of the lacc2 gene in these transformants was determined by RT-PCR. Silencing of lacc2 resulted in a decrease in laccase activity between 30 and 55%, which depended on the level of laccase expression achieved. The silenced strains (T21, T26, and T27) displayed a delay in the development of mycelium on potato dextrose agar (PDA) medium, whereas in the cultures grown on wheat straw, we found that these strains were incapable of producing aerial mycelium, primordia, and fruiting bodies. Scanning electron microscopy (SEM) showed the presence of toxocyst-like structures. The highest abundance of these structures was observed in the wild-type (PoB) and T7 strains. However, the abundance of toxocysts decreased in the T21 and T26 strains, and in T27 they were not detected. These results suggest that the presence and abundance of toxocyst-like structures are directly related to the development of fruiting bodies. Furthermore, our data confirm that lacc2 is involved in the morphogenesis process of P. ostreatus.


Asunto(s)
Ascomicetos , Pleurotus , Lacasa/genética , Lacasa/metabolismo , Ascomicetos/metabolismo
3.
Biochim Biophys Acta Gen Subj ; 1865(3): 129828, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33347959

RESUMEN

BACKGROUND: The pentose phosphate pathway (PPP) has received significant attention because of the role of NADPH and R-5-P in the maintenance of cancer cells, which are necessary for the synthesis of fatty acids and contribute to uncontrollable proliferation. The HsG6PD enzyme is the rate-limiting step in the oxidative branch of the PPP, leading to an increase in the expression levels in tumor cells; therefore, the protein has been proposed as a target for the development of new molecules for use in cancer. METHODS: Through in vitro studies, we assayed the effects of 55 chemical compounds against recombinant HsG6PD. Here, we present the kinetic characterization of four new HsG6PD inhibitors as well as their functional and structural effects on the protein. Furthermore, molecular docking was performed to determine the interaction of the best hits with HsG6PD. RESULTS: Four compounds, JMM-2, CCM-4, CNZ-3, and CNZ-7, were capable of reducing HsG6PD activity and showed noncompetitive and uncompetitive inhibition. Moreover, experiments using circular dichroism and fluorescence spectroscopy showed that the molecules affect the structure (secondary and tertiary) of the protein as well as its thermal stability. Computational docking analysis revealed that the interaction of the compounds with the protein does not occur at the active site. CONCLUSIONS: We identified two new compounds (CNZ-3 and JMM-2) capable of inhibiting HsG6PD that, compared to other previously known HsG6PD inhibitors, showed different mechanisms of inhibition. GENERAL SIGNIFICANCE: Screening of new inhibitors for HsG6PD with a future pharmacological approach for the study and treatment of cancer.


Asunto(s)
Inhibidores Enzimáticos/química , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Dominio Catalítico , Pruebas de Enzimas , Expresión Génica , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Termodinámica
4.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650494

RESUMEN

This report describes a functional and structural analysis of fused glucose-6-phosphate dehydrogenase dehydrogenase-phosphogluconolactonase protein from the protozoan Trichomonas vaginalis (T. vaginalis). The glucose-6-phosphate dehydrogenase (g6pd) gene from T. vaginalis was isolated by PCR and the sequence of the product showed that is fused with 6pgl gene. The fused Tvg6pd::6pgl gene was cloned and overexpressed in a heterologous system. The recombinant protein was purified by affinity chromatography, and the oligomeric state of the TvG6PD::6PGL protein was found as tetramer, with an optimal pH of 8.0. The kinetic parameters for the G6PD domain were determined using glucose-6-phosphate (G6P) and nicotinamide adenine dinucleotide phosphate (NADP+) as substrates. Biochemical assays as the effects of temperature, susceptibility to trypsin digestion, and analysis of hydrochloride of guanidine on protein stability in the presence or absence of NADP+ were performed. These results revealed that the protein becomes more stable in the presence of the NADP+. In addition, we determined the dissociation constant for the binding (Kd) of NADP+ in the protein and suggests the possible structural site in the fused TvG6PD::6PGL protein. Finally, computational modeling studies were performed to obtain an approximation of the structure of TvG6PD::6PGL. The generated model showed differences with the GlG6PD::6PGL protein (even more so with human G6PD) despite both being fused.


Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Estabilidad de Enzimas/genética , Glucosafosfato Deshidrogenasa/genética , NADP/genética , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Trichomonas vaginalis/genética , Secuencia de Aminoácidos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Estabilidad Proteica , Alineación de Secuencia , Temperatura
5.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326520

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most frequent human enzymopathy, affecting over 400 million people globally. Worldwide, 217 mutations have been reported at the genetic level, and only 19 have been found in Mexico. The objective of this work was to contribute to the knowledge of the function and structure of three single natural variants (G6PD A+, G6PD San Luis Potosi, and G6PD Guadalajara) and a double mutant (G6PD Mount Sinai), each localized in a different region of the three-dimensional (3D) structure. In the functional characterization of the mutants, we observed a decrease in specific activity, protein expression and purification, catalytic efficiency, and substrate affinity in comparison with wild-type (WT) G6PD. Moreover, the analysis of the effect of all mutations on the structural stability showed that its presence increases denaturation and lability with temperature and it is more sensible to trypsin digestion protease and guanidine hydrochloride compared with WT G6PD. This could be explained by accelerated degradation of the variant enzymes due to reduced stability of the protein, as is shown in patients with G6PD deficiency.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa/enzimología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/metabolismo , Naftalenosulfonatos de Anilina/química , Catálisis , Dicroismo Circular , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/aislamiento & purificación , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Guanidina , Humanos , Cinética , México , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Estabilidad Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Programas Informáticos , Temperatura , Tripsina/química
6.
Microorganisms ; 8(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878282

RESUMEN

Triosephosphate isomerase (TPI) is a glycolysis enzyme, which catalyzes the reversible isomerization between dihydroxyactetone-3-phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP). In pathogenic organisms, TPI is essential to obtain the energy used to survive and infect. Fusarium oxisporum (Fox) is a fungus of biotechnological importance due to its pathogenicity in different organisms, that is why the relevance of also biochemically analyzing its TPI, being the first report of its kind in a Fusarium. Moreover, the kinetic characteristics or structural determinants related to its function remain unknown. Here, the Tpi gene from F. oxysporum was isolated, cloned, and overexpressed. The recombinant protein named FoxTPI was purified (97% purity) showing a molecular mass of 27 kDa, with optimal activity at pH 8.0 and and temperature of 37 °C. The values obtained for Km and Vmax using the substrate GAP were 0.47 ± 0.1 mM, and 5331 µmol min-1 mg-1, respectively. Furthemore, a protein structural modeling showed that FoxTPI has the classical topology of TPIs conserved in other organisms, including the catalytic residues conserved in the active site (Lys12, His94 and Glu164). Finally, when FoxTPI was analyzed with inhibitors, it was found that one of them inhibits its activity, which gives us the perspective of future studies and its potential use against this pathogen.

7.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31652968

RESUMEN

Gluconacetobacter diazotrophicus PAL5 (GDI) is an endophytic bacterium with potential biotechnological applications in industry and agronomy. The recent description of its complete genome and its principal metabolic enzymes suggests that glucose metabolism is accomplished through the pentose phosphate pathway (PPP); however, the enzymes participating in this pathway have not yet been characterized in detail. The objective of the present work was to clone, purify, and biochemically and physicochemically characterize glucose-6-phosphate dehydrogenase (G6PD) from GDI. The gene was cloned and expressed as a tagged protein in E. coli to be purified by affinity chromatography. The native state of the G6PD protein in the solution was found to be a tetramer with optimal activity at pH 8.8 and a temperature between 37 and 50 °C. The apparent Km values for G6P and nicotinamide adenine dinucleotide phosphate (NADP+) were 63 and 7.2 µM, respectively. Finally, from the amino acid sequence a three-dimensional (3D) model was obtained, which allowed the arrangement of the amino acids involved in the catalytic activity, which are conserved (RIDHYLGKE, GxGGDLT, and EKPxG) with those of other species, to be identified. This characterization of the enzyme could help to identify new environmental conditions for the knowledge of the plant-microorganism interactions and a better use of GDI in new technological applications.


Asunto(s)
Clonación Molecular , Gluconacetobacter/enzimología , Glucosafosfato Deshidrogenasa/metabolismo , Escherichia coli/metabolismo , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/genética , Concentración de Iones de Hidrógeno , Cinética , NADP/metabolismo , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Temperatura
8.
Biomolecules ; 10(1)2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31892224

RESUMEN

Giardia lambia is a flagellated protozoan parasite that lives in the small intestine and is the causal agent of giardiasis. It has been reported that G. lamblia exhibits glucose-6-phosphate dehydrogenase (G6PD), the first enzyme in the pentose phosphate pathway (PPP). Our group work demonstrated that the g6pd and 6pgl genes are present in the open frame that gives rise to the fused G6PD::6PGL protein; where the G6PD region is similar to the 3D structure of G6PD in Homo sapiens. The objective of the present work was to show the presence of the structural NADP+ binding site on the fused G6PD::6PGL protein and evaluate the effect of the NADP+ molecule on protein stability using biochemical and computational analysis. A protective effect was observed on the thermal inactivation, thermal stability, and trypsin digestions assays when the protein was incubated with NADP+. By molecular docking, we determined the possible structural-NADP+ binding site, which is located between the Rossmann fold of G6PD and 6PGL. Finally, molecular dynamic (MD) simulation was used to test the stability of this complex; it was determined that the presence of both NADP+ structural and cofactor increased the stability of the enzyme, which is in agreement with our experimental results.


Asunto(s)
Giardia lamblia/enzimología , Glucosafosfato Deshidrogenasa/química , NADP/química , NADP/metabolismo , Fosfogluconato Deshidrogenasa/química , Sitios de Unión , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Modelos Moleculares , Fosfogluconato Deshidrogenasa/metabolismo , Conformación Proteica , Estabilidad Proteica , Temperatura
9.
Int J Mol Sci ; 19(9)2018 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-30149622

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway and is highly relevant in the metabolism of Giardialamblia. Previous reports suggested that the G6PD gene is fused with the 6-phosphogluconolactonase (6PGL) gene (6pgl). Therefore, in this work, we decided to characterize the fused G6PD-6PGL protein in Giardialamblia. First, the gene of g6pd fused with the 6pgl gene (6gpd::6pgl) was isolated from trophozoites of Giardialamblia and the corresponding G6PD::6PGL protein was overexpressed and purified in Escherichia coli. Then, we characterized the native oligomeric state of the G6PD::6PGL protein in solution and we found a catalytic dimer with an optimum pH of 8.75. Furthermore, we determined the steady-state kinetic parameters for the G6PD domain and measured the thermal stability of the protein in both the presence and absence of guanidine hydrochloride (Gdn-HCl) and observed that the G6PD::6PGL protein showed alterations in the stability, secondary structure, and tertiary structure in the presence of Gdn-HCl. Finally, computer modeling studies revealed unique structural and functional features, which clearly established the differences between G6PD::6PGL protein from G. lamblia and the human G6PD enzyme, proving that the model can be used for the design of new drugs with antigiardiasic activity. These results broaden the perspective for future studies of the function of the protein and its effect on the metabolism of this parasite as a potential pharmacological target.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Giardia lamblia/enzimología , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Hidrolasas de Éster Carboxílico/genética , ADN Complementario/química , ADN Complementario/genética , Activación Enzimática , Estabilidad de Enzimas , Expresión Génica , Giardia lamblia/genética , Glucosafosfato Deshidrogenasa/genética , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes de Fusión/genética , Relación Estructura-Actividad , Temperatura
10.
Int J Biol Macromol ; 119: 926-936, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30096395

RESUMEN

The deficiency of glucose­6­phosphate dehydrogenase (G6PD) is one of the most common inborn errors of metabolism worldwide. This congenital disorder generally results from mutations that are spread throughout the entire gene of G6PD. Three single-point mutations for G6PD have been reported in the Mexican population and named Veracruz (Arg365His), G6PD Seattle (Asp282His), and G6PD Mexico DF (Thr65Ala), whose biochemical characterization have not yet been studied. For this reason, in this work we analyzed the putative role of the three mutations to uncover the functional consequences on G6PD activity. To this end, was developed a method to clone, overexpress, and purify recombinant human G6PD. The results obtained from all variants showed a loss of catalysis by 80 to 97% and had a decrease in affinity for both physiological substrates with respect to the wild type (WT) G6PD. Our results also showed that the three mutations affected three-dimensional structure and protein stability, suggesting an unstable structure with low conformational stability that affected its G6PD functionality. Finally, based on the biochemical characterization of the unclassified G6PD Mexico DF, we suggest that this variant could be grouped as a Class I variant, because biochemical data are similar with other Class I G6PDs.


Asunto(s)
Clonación Molecular , Genética de Población , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/genética , Mutación , Dicroismo Circular , Activación Enzimática , Estabilidad de Enzimas , Glucosafosfato Deshidrogenasa/aislamiento & purificación , Humanos , Cinética , México , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes , Relación Estructura-Actividad , Termodinámica
11.
J Med Food ; 21(7): 734-743, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29481311

RESUMEN

Tropical fruit peels are generally discarded as waste, yet they contain bioactive substances that could have various uses; in addition, their pharmacological potential remains unexplored. This study aims to characterize the phytochemical profile, toxicity, and pharmacological potential of methanol extracts obtained from the peels of the following tropical fruit species: Annona squamosa L. (purple sugar apple), Annona reticulata L. (custard apple), Chrysophyllum cainito L. (green star apple), and Melicoccus bijugatus Jacq. (mamoncillo). Methanol peel extracts were obtained by maceration. All extracts contained flavonoids, anthraquinones, and triterpenoids as determined by colorimetric methods. A. squamosa and C. cainito exhibited the highest content of total phenols as assayed by the Folin-Ciocalteu method. M. bijugatus showed the highest content of total sugars (fructose, glucose, and sucrose) as determined by high-performance liquid chromatography. A. squamosa and C. cainito presented the highest antioxidant capacities (according to 2,2'-diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid, and cupric reducing antioxidant capacity assays), displayed moderate toxicity against HCT-116 cells, and increased the vinblastine susceptibility of MCF-7/Vin+. A. squamosa and M. bijugatus extracts demonstrated modulation of acetylcholinesterase activity, whereas those of A. reticulata showed anti-inflammatory activity by inhibiting protein denaturation. These results confirm that tropical fruit peels can be valuable sources of bioactive compounds, and our findings provide new information about their pharmacologic potential so that they can be used as raw material for the development of new drugs aimed at treating a variety of ailments.


Asunto(s)
Annona/química , Frutas/química , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sapindaceae/química , Sapotaceae/química , Antioxidantes , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Fitoquímicos/aislamiento & purificación , Fitoquímicos/toxicidad , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Residuos/análisis
12.
Genes (Basel) ; 8(11)2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29099754

RESUMEN

The microaerophilic protozoan Giardia lamblia is the agent causing giardiasis, an intestinal parasitosis of worldwide distribution. Different pharmacotherapies have been employed against giardiasis; however, side effects in the host and reports of drug resistant strains generate the need to develop new strategies that identify novel biological targets for drug design. To support this requirement, we have designed and evaluated a vector containing a cassette for the synthesis of double-stranded RNA (dsRNA), which can silence expression of a target gene through the RNA interference (RNAi) pathway. Small silencing RNAs were detected and quantified in transformants expressing dsRNA by a stem-loop RT-qPCR approach. The results showed that, in transformants expressing dsRNA of 100-200 base pairs, the level of NADHox mRNA was reduced by around 30%, concomitant with a decrease in enzyme activity and a reduction in the number of trophozoites with respect to the wild type strain, indicating that NADHox is indeed an important enzyme for Giardia viability. These results suggest that it is possible to induce the G. lamblia RNAi machinery for attenuating the expression of genes encoding proteins of interest. We propose that our silencing strategy can be used to identify new potential drug targets, knocking down genes encoding different structural proteins and enzymes from a wide variety of metabolic pathways.

13.
Int J Mol Sci ; 18(11)2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-29072585

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD) and G6PD Nefza (Leu323Pro), and the double mutant G6PD A- (Asn126Asp + Leu323Pro). The mutants showed lower residual activity (≤50% of WT G6PD) and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A-. Moreover, our study suggests that the G6PD Nefza and G6PD A- mutations affect enzyme functions in a similar fashion to those reported for Class I mutations.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/genética , Mutación , Alelos , Sustitución de Aminoácidos , Activación Enzimática/efectos de los fármacos , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/aislamiento & purificación , Humanos , Cinética , Modelos Moleculares , Mutagénesis , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Análisis Espectral , Termodinámica
14.
MethodsX ; 4: 289-296, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28948157

RESUMEN

Purification of nucleic acids is an essential procedure for most experiments in molecular biology. In this paper, the freeze-squeeze method with some modifications is proposed as an alternative methodology for the purification, concentration and recovery of small DNA fragments from agarose gels. The advantage of this alternative methodology is that it enables the recovery of fragments that are less than 100 bp in length and enables suspension of products in smaller volumes compared to several commercially available kits. In addition, the purified fragments were re-amplified by PCR and used for cloning and sequencing. Moreover, this protocol was used to perform the isolation and identification of microRNAs from Giardia lamblia, as previously reported. This protocol has the advantage of being inexpensive and easy and can be employed for various molecular applications. The advantages of this protocol include •A modified classical method was used for purification of small DNA fragments from G. lamblia.•The modified freeze-squeeze method was more efficient in cleaning up small DNA fragments from agarose gels compared to commercial kits.•The modified method allows concentration and recovery of fragments up to 60 bp in length.•The modified freeze-squeeze method allows re-suspension of the products in volumes of up to 2.5 µL.

15.
Pharm Biol ; 55(1): 649-656, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27951745

RESUMEN

CONTEXT: Echinacea (Asteraceae) is used because of its pharmacological properties. However, there are few studies that integrate phytochemical analyses with pharmacological effects. OBJECTIVE: Evaluate the chemical profile and biological activity of hydroalcoholic Echinacea extracts. MATERIALS AND METHODS: Density, dry matter, phenols (Folin-Ciocalteu method), flavonoids (AlCl3 method), alkylamides (GC-MS analysis), antioxidant capacity (DPPH and ABTS methods), antiproliferative effect (SRB assay), anti-inflammatory effect (paw oedema assay, 11 days/Wistar rats; 0.4 mL/kg) and hypoglycaemic effect (33 days/Wistar rats; 0.4 mL/kg) were determined in three Echinacea extracts which were labelled as A, B and C (A, roots of Echinacea purpurea L. Moench; B, roots, leaves, flowers and seeds of Echinacea purpurea; C, aerial parts and roots of Echinacea purpurea and roots of Echinacea angustifolia DC). RESULTS: Extract C showed higher density (0.97 g/mL), dry matter (0.23 g/mL), phenols (137.5 ± 2.3 mEAG/mL), flavonoids (0.62 ± 0.02 mEQ/mL), and caffeic acid (0.048 mg/L) compared to A and B. A, B presented 11 alkylamides, whereas C presented those 11 and three more. B decreased the oedema (40%) on day 2 similar to indomethacin. A and C showed hypoglycaemic activity similar to glibenclamide. Antiproliferative effect was only detected for C (IC50 270 µg/mL; 8171 µg/mL; 9338 µg/mL in HeLa, MCF-7, HCT-15, respectively). DISCUSSION AND CONCLUSION: The difference in the chemical and pharmacological properties among extracts highlights the need to consider strategies and policies for standardization of commercial herbal extracts in order to guarantee the safety and identity of this type of products.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Echinacea/química , Edema/prevención & control , Hipoglucemiantes/farmacología , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Aloxano , Animales , Antiinflamatorios/aislamiento & purificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Benzotiazoles/química , Biomarcadores/sangre , Compuestos de Bifenilo/química , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Carragenina , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Echinacea/clasificación , Edema/inducido químicamente , Células HeLa , Humanos , Hipoglucemiantes/aislamiento & purificación , Células MCF-7 , Masculino , Neoplasias/patología , Fitoquímicos/aislamiento & purificación , Fitoterapia , Picratos/química , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Ratas Wistar , Ácidos Sulfónicos/química , Factores de Tiempo
16.
Int J Mol Sci ; 17(12)2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27941691

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein.


Asunto(s)
Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Biología Computacional , Glucosafosfato Deshidrogenasa/química , Humanos , Mutación , Especies Reactivas de Oxígeno/metabolismo
17.
Genes (Basel) ; 7(12)2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27999395

RESUMEN

Stem-loop quantitative reverse transcription PCR (RT-qPCR) is a molecular technique used for identification and quantification of individual small RNAs in cells. In this work, we used a Universal ProbeLibrary (UPL)-based design to detect-in a rapid, sensitive, specific, and reproducible way-the small nucleolar RNA (snoRNA) GlsR17 and its derived miRNA (miR2) of Giardia lamblia using a stem-loop RT-qPCR approach. Both small RNAs could be isolated from both total RNA and small RNA samples. Identification of the two small RNAs was carried out by sequencing the PCR-amplified small RNA products upon ligation into the pJET1.2/blunt vector. GlsR17 is constitutively expressed during the 72 h cultures of trophozoites, while the mature miR2 is present in 2-fold higher abundance during the first 48 h than at 72 h. Because it has been suggested that miRNAs in G. lamblia have an important role in the regulation of gene expression, the use of the stem-loop RT-qPCR method could be valuable for the study of miRNAs of G. lamblia. This methodology will be a powerful tool for studying gene regulation in G. lamblia, and will help to better understand the features and functions of these regulatory molecules and how they work within the RNA interference (RNAi) pathway in G. lamblia.

18.
Int J Mol Sci ; 17(5)2016 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-27213370

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site.


Asunto(s)
Indio Americano o Nativo de Alaska/genética , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/genética , Mutación , Dominio Catalítico , Clonación Molecular , Biología Computacional/métodos , Cristalografía por Rayos X , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Cinética , México , Modelos Moleculares , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
19.
Gene ; 581(1): 21-30, 2016 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-26778241

RESUMEN

The analysis of transcript levels of specific genes is important for understanding transcriptional regulation and for the characterization of gene function. Real-time quantitative reverse transcriptase PCR (RT-qPCR) has become a powerful tool to quantify gene expression. The objective of this study was to identify reliable housekeeping genes in Giardia lamblia. Twelve genes were selected for this purpose, and their expression was analyzed in the wild type WB strain and in two strains with resistance to nitazoxanide (NTZ) and metronidazole (MTZ), respectively. RefFinder software analysis showed that the expression of the genes is different in the three strains. The integrated data from the four analyses showed that the NADH oxidase (NADH) and aldolase (ALD) genes were the most steadily expressed genes, whereas the glyceraldehyde-3-phosphate dehydrogenase gene was the most unstable. Additionally, the relative expression of seven genes were quantified in the NTZ- and MTZ-resistant strains by RT-qPCR, using the aldolase gene as the internal control, and the results showed a consistent differential pattern of expression in both strains. The housekeeping genes found in this work will facilitate the analysis of mRNA expression levels of other genes of interest in G. lamblia.


Asunto(s)
Regulación de la Expresión Génica , Genes Esenciales , Giardia lamblia/genética , Animales , Antiprotozoarios/farmacología , Cartilla de ADN , Giardia lamblia/efectos de los fármacos , Metronidazol/farmacología , Nitrocompuestos , Reacción en Cadena en Tiempo Real de la Polimerasa , Tiazoles/farmacología
20.
Biochim Biophys Acta ; 1860(1 Pt A): 97-107, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26518348

RESUMEN

BACKGROUND: Proton pump inhibitors (PPIs) are extensively used in clinical practice because of their effectiveness and safety. Omeprazole is one of the best-selling drugs worldwide and, with other PPIs, has been proposed to be potential drugs for the treatment of several diseases. We demonstrated that omeprazole shows cytotoxic effects in Giardia and concomitantly inactivates giardial triosephosphate isomerase (GlTIM). Therefore, we evaluated the efficiency of commercially available PPIs to inactivate this enzyme. METHODS: We assayed the effect of PPIs on the GlTIM WT, single Cys mutants, and the human counterpart, following enzyme activity, thermal stability, exposure of hydrophobic regions, and susceptibility to limited proteolysis. RESULTS: PPIs efficiently inactivated GlTIM; however, rabeprazole was the best inactivating drug and was nearly ten times more effective. The mechanism of inactivation by PPIs was through the modification of the Cys 222 residue. Moreover, there are important changes at the structural level, the thermal stability of inactivated-GlTIM was drastically diminished and the structural rigidity was lost, as observed by the exposure of hydrophobic regions and their susceptibility to limited proteolysis. CONCLUSIONS: Our results demonstrate that rabeprazole is the most potent PPI for GlTIM inactivation and that all PPIs tested have substantial abilities to alter GITIM at the structural level, causing serious damage. GENERAL SIGNIFICANCE: This is the first report demonstrating the effectiveness of commercial PPIs on a glycolytic parasitic enzyme, with structural features well known. This study is a step forward in the use and understanding the implicated mechanisms of new antigiardiasic drugs safe in humans.


Asunto(s)
Diseño de Fármacos , Giardia lamblia/efectos de los fármacos , Inhibidores de la Bomba de Protones/farmacología , Triosa-Fosfato Isomerasa/antagonistas & inhibidores , Estabilidad de Enzimas , Giardia lamblia/enzimología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...